Full distance-resolved folding energy landscape of one single protein molecule
نویسندگان
چکیده
منابع مشابه
Full distance-resolved folding energy landscape of one single protein molecule.
Kinetic bulk and single molecule folding experiments characterize barrier properties but the shape of folding landscapes between barrier top and native state is difficult to access. Here, we directly extract the full free energy landscape of a single molecule of the GCN4 leucine zipper using dual beam optical tweezers. To this end, we use deconvolution force spectroscopy to follow an individual...
متن کاملEnergy landscape of knotted protein folding.
Recent experiments have conclusively shown that proteins are able to fold from an unknotted, denatured polypeptide to the knotted, native state without the aid of chaperones. These experiments are consistent with a growing body of theoretical work showing that a funneled, minimally frustrated energy landscape is sufficient to fold small proteins with complex topologies. Here, we present a theor...
متن کاملFast protein folding on downhill energy landscape.
Proteins fold in a time range of microseconds to minutes despite the large amount of possible conformers. Molecular dynamics simulations of a three-stranded antiparallel beta-sheet peptide (for a total of 12.6 microsec and 72 folding events) show that at the melting temperature the unfolded state ensemble contains many more conformers than those sampled during a folding event.
متن کاملEnergy landscape theory for cotranslational protein folding
Abstract Energy landscape theory describes how a full-length protein can attain its native fold after sampling only a tiny fraction of all possible structures. Although protein folding is now understood to be concomitant with synthesis on the ribosome there have been few attempts to modify energy landscape theory by accounting for cotranslational folding. This paper introduces a model for cotra...
متن کاملEnergy landscape in protein folding and unfolding.
We use (1)H NMR to probe the energy landscape in the protein folding and unfolding process. Using the scheme ⇄ reversible unfolded (intermediate) → irreversible unfolded (denatured) state, we study the thermal denaturation of hydrated lysozyme that occurs when the temperature is increased. Using thermal cycles in the range 295 < T < 365 K and following different trajectories along the protein e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2010
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0909854107